Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Serotonin neurons of the dorsal and median raphe nuclei (DR, MR) collectively innervate the entire forebrain and midbrain, modulating diverse physiology and behavior. To gain a fundamental understanding of their molecular heterogeneity, we used plate-based single-cell RNA-sequencing to generate a comprehensive dataset comprising eleven transcriptomically distinct serotonin neuron clusters. Systematic in situ hybridization mapped specific clusters to the principal DR, caudal DR, or MR. These transcriptomic clusters differentially express a rich repertoire of neuropeptides, receptors, ion channels, and transcription factors. We generated novel intersectional viral-genetic tools to access specific subpopulations. Whole-brain axonal projection mapping revealed that DR serotonin neurons co-expressing vesicular glutamate transporter-3 preferentially innervate the cortex, whereas those co-expressing thyrotropin-releasing hormone innervate subcortical regions in particular the hypothalamus. Reconstruction of 50 individual DR serotonin neurons revealed diverse and segregated axonal projection patterns at the single-cell level. Together, these results provide a molecular foundation of the heterogenous serotonin neuronal phenotypes.more » « less
-
Abstract Water/oxide interfaces are ubiquitous on earth and show significant influence on many chemical processes. For example, understanding water and solute adsorption as well as catalytic water splitting can help build better fuel cells and solar cells to overcome our looming energy crisis; the interaction between biomolecules and water/oxide interfaces is one hypothesis to explain the origin of life. However, knowledge in this area is still limited due to the difficulty of studying water/solid interfaces. As a result, research using increasingly sophisticated experimental techniques and computational simulations has been carried out in recent years. Although it is difficult for experimental techniques to provide detailed microscopic structural information, molecular dynamics (MD) simulations have satisfactory performance. In this review, we discuss classical and ab initio MD simulations of water/oxide interfaces. Generally, we are interested in the following questions: How do solid surfaces perturb interfacial water structure? How do interfacial water molecules and adsorbed solutes affect solid surfaces and how do interfacial environments affect solvent and solute behavior? Finally, we discuss progress in the application of neural network potential based MD simulations, which offer a promising future because this approach has already enabled ab initio level accuracy for very large systems and long trajectories. This article is categorized under:Theoretical and Physical Chemistry > SpectroscopyMolecular and Statistical Mechanics > Molecular InteractionsStructure and Mechanism > Molecular Structuresmore » « less
An official website of the United States government
